Model Magnetic Force Microscope

Michael Matty & Keisuke Osumi
Magnetic Force Microscopy

- Type of scanning probe microscopy, variant of atomic force microscopy
- Scan magnetic tip over a given surface
 - Image magnetic stray field
 - Resolutions on the order of 10 nm
Magnetic Force Microscopy

- On first pass, obtain information about topography (right)
- On second pass, use topographical information to maintain constant height and gather data that reveals information about magnetic properties of the sample (i.e. magnetic domain structure, grain boundaries) (left)

Scan of Iron Platinum; image credit: Stephan Piotrowski
Motivation

- MFM is widely used to study nanoscale magnetization patterns
- MFMMs are usually very complicated to look at and understand

image credit: Stephan Piotrowski
Motivation

- This project allows for easy demonstration
 - Clear view of key components
 - Easier to understand underlying physics
Motivation
Motivation

- Laser pointer
- Magnetic Tip
- Mirror
- 2 Photodiodes
Mechanics

- Cantilever scanned over given surface
- 2 movement axes
- Stepper motors control motion
 - Accurate control to within 1/2000 inches

Top view of model MFM
Mechanics

- Magnet on tip repulsed/attracted by magnetic force exerted on it by the sample
 - Tip approximated as point dipole
 - $F_{dip} = (m \cdot \nabla)B$
 - m is the dipole moment of the tip, B is the magnetic field due to the sample at the position of the tip
- Tip height determined by position of laser spot reflected off mounted mirror
Detector & Circuitry

Circuit diagram of electronic components. We will discuss this piecewise...
Detector

- Split Photodiode Detector
 - Voltage on each diode related to area of laser dot hitting it
 - More of laser hitting it, higher voltage
Circuitry

- Photodiodes outputted to voltage amplifiers
- Amplified voltages are subtracted
 - Can determine position of laser dot on detector from resulting voltage
Circuitry

- Run signal through low-pass filters
 - Remove noise [60Hz] from overhead lighting
 - Impedance ["resistivity"] of capacitor:
 \[R_c \cong |Z_c| = \frac{1}{\omega C} \]
Circuitry

- Arduino detects output voltage using analog electronics
 - Detects voltages from 0 to 5V in 5 mV increments
Circuitry

- Use voltage divider
 - Offset output by adding appropriate voltage
 - Keep output voltage between 0 and 5 V
 - \[V_o = \frac{R_2}{R_1+R_2} V_{in} \]
Calibration

- arctangent relationship between output voltage (V_o) to laser dot displacement (d) \(^{(1)}\)
- Yields: $V_o = \arctan(1.6103 \times d + 0.6518)$
- Inverted: $d = (0.621)\tan(V_o) - 0.405$
Calibration

- Graph output voltage of photodiodes against known displacements of the laser spot
Data Analysis

- Force can be computed using deflection height and spring constant from a torque conservation argument.

\[F_{\text{on tip}} = \frac{l_{\text{spring}}}{l_{\text{magnet}}} (2kz) \]

But we have to find \(z \) from the data that we have: voltage output from the split photodiode detector.
Data Analysis

- Relate laser displacement to deflection angle

\[d = (L+x)\tan(\alpha) + y - H \]
\[\alpha = \theta + 2\psi \]

H is the vertical displacement of the equilibrium dot position from the origin (axis of rotation)

(x,y) is the position of the contact point of the laser relative to the origin
Data Analysis

Noting that points on the top bar of the cantilever are constrained to move on a circle about the axis of rotation of radius h, we have

\[x = \frac{(\sec \psi - 1)}{\tan \psi + \tan \theta} \cdot h \quad y = \frac{(\tan \theta \sec \psi + \tan \psi)}{\tan \theta + \tan \psi} \cdot h \]

using our result from the previous slide, and taylor expanding our solutions for x and y to second order yields:

\[\psi = \frac{L \pm \sqrt{L^2 + h(h - H - d + L \tan \theta)}}{h} \]
Data Analysis

- Using a similar triangles argument finally yields the deflection height z as:

$$z = \tan(\psi) \left[l_{spring} - \frac{y-h}{\tan(\theta)} - \frac{y-h}{\tan(\psi)} \right]$$

- If we so desired, we could substitute our expressions for ψ and y into the previous expression to have z as a function of d, where θ, h, L, and l are fixed parameters.
Putting it all together...

- Scan across sample
- Pass photodiode output through circuit to obtain readings [in volts]
- Convert voltage to compression of springs
- Use compression to calculate force on tip
- Now we have to do something with the data...
Graphing Software

We would like to be able to represent magnetic sample patterns that we construct, like this one.
Graphing Software

- Data is taken in discrete line scans
 - Image of large line-spacing data:

![Graph of Analog In data](image-url)
We would like to see a continuous surface
- First improvement: high scan density
- We get a much clearer picture
- Still discrete lines, and hard to interpret
Next Improvement (2):

- Partition the region in which the data lies into a grid of square cells
- Ideally we would be able to solve a matrix equation, $Ax=b$, for a coordinate vector at every point
- It is usually the case that there are more vertices in the grid that there are data points, in which case the problem will be underdetermined
Graphing Software

- solve minimization problem instead:
 - Seek to minimize $\|Ax - b\|^2$
 - called residual
- We would also like to find a way to give preference to smoother solution surfaces
- Add a regularization term to the minimization problem that biases towards smooth solutions
- This particular algorithm works by enforcing gradient equivalence across nearest-neighbor cell boundaries
Graphing Software

- Use an iterative solver to find a vector x such that

$$\|Ax - b\|^2 + \|\Gamma x\|^2$$

is minimized

 - Gamma is our smoothness operator
 - Multiplying the regularization term by a scalar works to increase or decrease the smoothness of the output surface depending on the magnitude of the scalar relative to unity
This method gives much nicer, more readable visualizations of data.
Results: Magnet CMU

Analog In (1 unit/4.9 mV) vs xy

Force (N) vs xy
Possible Sources of Error

● Non-exact equilibrium alignment
 ○ deflection in opposite directions result in different positions
 ○ gives difference of +/- 5 mV on input
 ○ About 1.6% of the input range
 ○ This error accounts for small noise on the equilibrium plane
Possible Sources of Error

- Vibration during movement
 - non-smooth motor movement causes vibrations
 - smoother movement mode doesn't provide enough torque
 - gives difference of +/- 10 mV on input
 - About 3.3% of the input range
 - More noticeable during x-movement, during which very few measurements are taken (in our data, between .5% and 2%)
Future Work

- Improving resolution & reducing error
- Modelling new types/modes of scanning probe microscopy
 - Topographic measurements
 - Conductive atomic force microscopy
 - Gain information about electric, as opposed to magnetic properties of sample (i.e. current-voltage characteristics, conductivity)
Acknowledgments

- Professor Sara Majetich, Ryan Booth, and the Majetich Group
- Carnegie Mellon University Physics Undergraduate Enrichment Fund

Images